next up previous
Next: About this document ... Up: Time-dependent quantum mechanical calculations O Previous: Conclusions

Bibliography

1
W. C. Gardiner, Combustion Chemistry (Springer, Berlin FRG, 1984).

2
H. Yang, W. C. Gardiner, K. S. Shin, and N. Fujii, Chem. Phys. Lett. 231, 449 (1994).

3
C.-L. Yu, M. Frenklach, D. A. Masten, R. K. Hanson, and C. T. Bowman, J. Phys. Chem. 98, 4770 (1994).

4
H. Du and J. P. Hessler, J. Chem. Phys. 96, 1077 (1992).

5
A. Jacobs, H. R. Volpp, and J. Wolfrum, Chem. Phys. Lett. 177, 200 (1991).

6
K. Keßler and K. Kleinermanns, J. Chem. Phys. 97, 374 (1992).

7
A. Jacobs, F. M. Schuler, H. R. Volpp, M. Wahl, and J. Wolfrum, Ber. Bunsenges. Phys. Chem. 94, 1390 (1990).

8
S.-O. Ryu, S. M. Hwang, and M. J. Rabinowitz, J. Phys. Chem. 99, 13984 (1995).

9
K. Honma, J. Chem. Phys. 102, 7856 (1995).

10
K. Kleinermanns, Radiochimica Acta 43, 118 (1988).

11
H. L. Kim, M. A. Wickramaaratchi, X. Zheng, and G. E. Hall, J. Chem. Phys. 101, 2033 (1994).

12
K. Kleinermanns, E. Linnebach, and M. Pohl, J. Chem. Phys. 91, 2181 (1989).

13
M. J. Bronikowski, R. Zhang, D. J. Rakestraw, and R. N. Zare, Chem. Phys. Lett. 156, 7 (1989).

14
R. A. Fei, X. S. Zheng, and G. E. Hall, J. Phys. Chem. A 101, 2541 (1997).

15
S. Sieger, V. Sick, H.-R. Volpp, and J. Wolfrum, Isr. J. Chem. 34, 5 (1994).

16
H. Rubahn, W. J. van der Zande, R. Zhang, M. J. Bronikowski, and R. N. Zare, Chem. Phys. Lett. 186, 154 (1991).

17
J. A. Miller and B. C. Garrett, Int. J. Chem. Kin. 29, 275 (1997).

18
A. J. C. Varandas, Mol. Phys. 85, 1159 (1995).

19
A. J. C. Varandas, Chem. Phys. Lett. 235, 111 (1995).

20
V. Klimo, M. Bittererová, S. Biskupic, and J. Urban, Chem. Phys. 173, 367 (1993).

21
A. J. C. Varandas, Chem. Phys. Lett. 225, 18 (1994).

22
A. J. C. Varandas, J. Brandão, and M. R. Pastrana, J. Chem. Phys. 96, 5137 (1992).

23
A. J. C. Varandas, J. Chem. Phys. 99, 1076 (1993).

24
K. Kleinermanns and R. Schinke, J. Chem. Phys. 80, 1440 (1984).

25
K. Kleinermanns and E. Linnebach, J. Chem. Phys. 82, 5012 (1985).

26
R. J. Duchovic and J. D. Pettigrew, J. Phys. Chem. 98, 10794 (1994).

27
A. Lifschitz and H. Teitelbaum, Chem. Phys. 219, 243 (1997).

28
J. Q. Dai and J. Z. H. Zhang, J. Phys. Chem. 100, 6898 (1996).

29
D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 101, 3671 (1994).

30
R. T Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys. 102, 5998 (1995).

31
R. T Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys. 99, 9310 (1993).

32
G. C. Groenenboom, J. Chem. Phys. 108, 5677 (1998).

33
Y. C. Zhang, Y. B. Zhang, L. X. Zhan, S. L. Zhang, D. H. Zhang, and J. Z. H. Zhang, Chinese Phys. Lett. 15, 16 (1998).

34
B. Kendrick, Int. J. Quantum Chem. 64, 581 (1997).

35
B. Kendrick, Int. J. Quantum Chem. 66, 111 (1998).

36
B. Kendrick and R. T Pack, J. Chem. Phys. 104, 7475 (1996).

37
B. Kendrick and R. T Pack, J. Chem. Phys. 104, 7502 (1996).

38
B. Kendrick and R. T Pack, Chem. Phys. Lett. 235, 291 (1995).

39
C. Leforestier and W. H. Miller, J. Chem. Phys. 100, 733 (1994).

40
T. C. Germann and W. H. Miller, J. Phys. Chem. A 101, 6358 (1997).

41
D. E. Skinner, T. C. German, and W. H. Miller, J. Phys. Chem. A 102, 3828 (1998).

42
A. Viel, C. Leforestier, and W. H. Miller, J. Chem. Phys. 108, 3489 (1998).

43
A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys. 108, 5404 (1998).

44
J. A. Miller, R. J. Kee, and C. K. Westbrook, Annu. Rev. Phys. Chem. 41, 345 (1990), and references therein.

45
C. Y. Yang and S. J. Klippenstein, J. Chem. Phys. 103, 7287 (1995), and references therein.

46
C. F. Melius and R. J. Blint, Chem. Phys. Lett. 64, 183 (1979).

47
M. R. Pastrana, L. A. M. Quintales, J. Brandão, and A. J. C. Varandas, J. Phys. Chem. 94, 8073 (1990).

48
B. Kendrick and R. T Pack, J. Chem. Phys. 102, 1994 (1995).

49
V. A. Mandelshtam, H. S. Taylor, and W. H. Miller, J. Chem. Phys. 105, 496 (1996).

50
V. A. Mandelshtam, T. P. Grozdanov, and H. S. Taylor, J. Chem. Phys. 103, 10074 (1995).

51
A. J. Dobbyn, M. Stumpf, H.-M. Keller, and R. Schinke, J. Chem. Phys. 104, 8357 (1996).

52
A. J. Dobbyn, M. Stumpf, H.-M. Keller, and R. Schinke, J. Chem. Phys. 103, 9947 (1995).

53
K. Song, G. H. Peslherbe, W. L. Hase, A. J. Dobbyn, M. Stumpf, and R. Schinke, J. Chem. Phys. 103, 8891 (1995).

54
R. Chen and H. Guo, Chem. Phys. Lett. 277, 191 (1997).

55
X. Wu and E. F. Hayes, J. Chem. Phys. 107, 2705 (1997).

56
J. M. C. Marques and A. J. C. Varandas, J. Phys. Chem. A 101, 5168 (1997).

57
K. Song and W. L. Hase, J. Phys. Chem. A 102, 1292 (1998).

58
J. Main, C. Jung, and H. S. Taylor, J. Chem. Phys. 107, 6577 (1997).

59
S. R. Langhoff and R. L. Jaffe, J. Chem. Phys. 71, 1475 (1979).

60
H. G. Yu and S. C. Smith, Chem. Phys. Lett. 283, 69 (1998).

61
C. A. Taatjes and D. B. Oh, Appl. Optics 36, 5817 (1997).

62
E. H. Fink and D. A. Ramsay, J. Mol. Spectrosc. 185, 304 (1997).

63
K. V. Chance, K. Park, K. M. Evenson, L. R. Zink, F. Stroh, E. H. Fink, and D. A. Ramsay, J. Mol. Spectrosc. 183, 418 (1997).

64
K. V. Chance, K. Park, K. M. Stevenson, L. R. Zink, and F. Stroh, J. Mol. Spectrosc. 172, 407 (1995).

65
M. Stumpf, A. J. Dobbyn, D. H. Mordant, H. M. Keller, H. Fluethmann, R. Schinke, H. J. Werner, and K. Yamashita, Faraday Discuss. 102, 193 (1995).

66
H. G. Yu and S. C. Smith, Ber. Bunsen. Phys. Chem. 101, 400 (1997).

67
J. H. Mather, P. S. Stevens, and W. H. Brune, J. Geophys. Res-Atmos. 102, 6427 (1997).

68
G. Herzberg, Molecular Spectra and Molecular Structure (van Nostrand, New York NY, 1945), Vol. II, pp. 13-60.

69
E. M. Goldfield and S. K. Gray, Comput. Phys. Commun. 98, 1 (1996).

70
E. M. Goldfield and S. K. Gray, J. Chem. Soc. Faraday Trans. 93, 909 (1997).

71
E. M. Goldfield and S. K. Gray, Chem. Phys. Lett. 276, 1961 (1997).

72
R. E. Wyatt, in Atom-Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New York NY, 1979), Chap. 17, pp. 567-594, and references therein.

73
R. E. Wyatt, in Atom-Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New York NY, 1979), Chap. 15, pp. 477-503, and references therein.

74
R. T Pack, in Advances in Molecular Vibrations and Collision Dynamics, edited by J. M. Bowman (JAI Press, Greenwich CT, 1993), Vol. II-A, pp. 111-145.

75
J. Tennyson and B. T. Sutcliffe, J. Mol. Spectrosc. 101, 71 (1983).

76
D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

77
G. C. Groenenboom and D. T. Colbert, J. Chem. Phys. 99, 9681 (1993).

78
E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University, Cambridge UK, 1935).

79
R. T Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).

80
M. E. Rose, Elementary Theory of Angular Momentum (J. Wiley and Sons, New York NY, 1957).

81
J. M. Brown, J. T. Hougen, K.-P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55, 500 (1975).

82
A. van der Avoird, P. E. S. Wormer, and R. Moszynski, Chem. Rev. 94, 1931 (1994).

83
G. Herzberg, Molecular Spectra and Molecular Structure (Krieger, Malabar, 1991), Vol. III.

84
V. J. Barclay, C. E. Dateo, I. P. Hamilton, B. Kendrick, R. T Pack, and D. W. Schwenke, J. Chem. Phys. 103, 3864 (1995).

85
D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

86
E. P. Wigner, in Quantum Theory of Angular Momentum, edited by L. C. Biedenharn and H. van Dam (Academic Press, New York NY, 1965), pp. 89-133.

87
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface (MIT Press, Cambridge MA, 1994).

88
M. Snir, S. W. Otto, S. Huss-Ledermann, D. W. Walker, and J. Dongarra, MPI: The Complete Reference (MIT Press, Cambridge MA, 1994).

89
See also: WWW: http://www.mcs.anl.gov/mpi and http://www.mcs.anl.gov/mpi/mpich.

90
S. K. Gray and D. E. Manolopoulos, J. Chem. Phys. 104, 7099 (1996).

91
S. K. Gray and C. E. Wozny, J. Chem. Phys. 91, 7671 (1989).

92
D. Kosloff and R. Kosloff, J. Comput. Phys. 63, 363 (1986).

93
R. H. Bisseling, R. Kosloff, and J. Manz, J. Chem. Phys. 83, 993 (1985).

94
A. Messiah, Quantum Mechanics (North Holland, Amsterdam NL, 1961).

95
A. J. H. M. Meijer and E. M. Goldfield, work in progress.

96
S. K. Gray and G. G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998).

97
A. J. H. M. Meijer, E. M. Goldfield, S. Gray, and G. G. Balint-Kurti, Chem. Phys. Lett. 293, 270 (1998).


  
Table: Relative contribution to the total reaction probability for J=10, $\Omega =0^+$ as a function of final $\Omega $ state, $\Omega _f$ for a number of selected energies. Last line is maximum element divided by minimum element.
Energy (eV) 0.80 1.00 1.20 1.40 1.60 1.80
$\Omega_f=0$ 12.7 16.4 13.2 15.3 7.7 11.2
$\Omega_f=1$ 14.8 18.4 14.1 12.3 11.9 11.5
$\Omega_f=2$ 12.7 3.8 16.6 11.6 14.3 8.6
$\Omega_f=3$ 8.5 16.6 7.9 14.8 10.6 11.6
$\Omega_f=4$ 15.0 22.5 20.3 11.7 12.1 5.0
$\Omega_f=5$ 13.8 4.5 7.6 14.1 12.8 12.9
$\Omega_f=6$ 13.4 7.1 4.5 6.2 10.3 10.4
$\Omega_f=7$ 5.9 6.8 6.7 6.1 7.9 14.6
$\Omega_f=8$ 1.7 3.3 5.3 5.9 5.9 8.6
$\Omega_f=9$ 1.0 0.6 2.7 1.7 4.9 4.0
$\Omega_f=10$ 0.5 0.1 1.0 0.4 1.6 1.7
max/min 33 342 21 41 9 9


  
Table: Relative contribution to the total reaction probability for J=5, $\Omega =0^+$ as a function of final $\Omega $ state, $\Omega _f$ for a number of selected energies. Last line is maximum element divided by minimum element.
Energy (eV) 0.80 1.00 1.20 1.40 1.60 1.80
$\Omega_f=0$ 14.1 14.1 17.4 12.9 16.2 13.8
$\Omega_f=1$ 16.4 20.9 15.0 16.2 17.9 20.6
$\Omega_f=2$ 29.6 21.2 26.6 20.3 16.8 16.6
$\Omega_f=3$ 31.2 23.3 14.8 29.4 29.4 20.1
$\Omega_f=4$ 3.7 16.4 22.2 14.9 14.6 22.9
$\Omega_f=5$ 5.0 4.1 4.1 6.3 5.1 6.0
max/min 9 6 6 5 6 4


  
Table: Relative contribution to the total reaction probability for J=10, $\Omega _i=1^+$ in the R-embedding as a function of final $\Omega $ state, $\Omega _f$ for a number of selected energies. Last line is maximum element divided by minimum element.
Energy (eV) 0.80 1.00 1.20 1.40 1.60 1.80
$\Omega_f=0$ 24.1 16.6 18.5 21.6 17.3 12.9
$\Omega_f=1$ 24.7 20.4 21.0 14.4 16.2 13.4
$\Omega_f=2$ 11.4 13.2 10.8 14.7 10.8 16.4
$\Omega_f=3$ 9.8 10.9 14.2 14.0 10.5 16.0
$\Omega_f=4$ 12.5 15.7 14.4 11.0 14.6 12.1
$\Omega_f=5$ 6.4 12.3 6.5 10.1 14.1 11.3
$\Omega_f=6$ 2.5 6.9 4.5 5.1 5.6 7.0
$\Omega_f=7$ 4.0 1.9 2.2 5.8 5.0 4.5
$\Omega_f=8$ 3.6 0.8 4.0 1.4 3.1 3.3
$\Omega_f=9$ 0.7 1.0 3.5 1.2 2.2 1.7
$\Omega_f=10$ 0.3 0.2 0.6 0.6 0.5 1.2
max/min 88 119 38 38 35 13


  
Table: Relative contribution to the total reaction probability for J=10, $\Omega _i=1^-$ in the R-embedding as a function of final $\Omega $ state, $\Omega _f$ for a number of selected energies. Last line is maximum element divided by minimum element.
Energy (eV) 0.80 1.00 1.20 1.40 1.60 1.80
$\Omega_f=1$ 5.5 13.6 5.1 7.9 4.7 5.4
$\Omega_f=2$ 8.8 9.2 6.7 6.2 4.4 4.0
$\Omega_f=3$ 8.6 12.6 7.2 12.7 7.2 5.2
$\Omega_f=4$ 17.1 15.1 11.1 9.6 9.0 7.9
$\Omega_f=5$ 9.9 15.6 23.7 16.6 10.1 9.0
$\Omega_f=6$ 15.1 11.6 11.2 11.6 17.3 15.1
$\Omega_f=7$ 8.5 8.0 12.2 8.2 15.7 18.4
$\Omega_f=8$ 14.7 5.4 10.1 12.8 11.8 13.5
$\Omega_f=9$ 6.1 7.1 7.4 5.2 12.1 13.3
$\Omega_f=10$ 5.6 1.8 5.4 9.2 7.7 8.3
max/min 3 8 5 3 4 5


next up previous
Next: About this document ... Up: Time-dependent quantum mechanical calculations O Previous: Conclusions
Anthony J. H. M. Meijer
1998-10-14