next up previous
Next: About this document ... Up: Time-dependent quantum mechanical calculations Previous: Acknowledgements

Bibliography

1
A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys. 108, 5404 (1998).

2
A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys. 110, 870 (1999).

3
W. C. Gardiner, Combustion Chemistry (Springer, Berlin FRG, 1984).

4
H. Yang, W. C. Gardiner, K. S. Shin, and N. Fujii, Chem. Phys. Lett. 231, 449 (1994).

5
C.-L. Yu, M. Frenklach, D. A. Masten, R. K. Hanson, and C. T. Bowman, J. Phys. Chem. 98, 4770 (1994).

6
H. Du and J. P. Hessler, J. Chem. Phys. 96, 1077 (1992).

7
A. Jacobs, H. R. Volpp, and J. Wolfrum, Chem. Phys. Lett. 177, 200 (1991).

8
K. Keßler and K. Kleinermanns, J. Chem. Phys. 97, 374 (1992).

9
A. Jacobs, F. M. Schuler, H. R. Volpp, M. Wahl, and J. Wolfrum, Ber. Bunsenges. Phys. Chem. 94, 1390 (1990).

10
S.-O. Ryu, S. M. Hwang, and M. J. Rabinowitz, J. Phys. Chem. 99, 13984 (1995).

11
K. Honma, J. Chem. Phys. 102, 7856 (1995).

12
K. Kleinermanns, Radiochimica Acta 43, 118 (1988).

13
H. L. Kim, M. A. Wickramaaratchi, X. Zheng, and G. E. Hall, J. Chem. Phys. 101, 2033 (1994).

14
K. Kleinermanns, E. Linnebach, and M. Pohl, J. Chem. Phys. 91, 2181 (1989).

15
M. J. Bronikowski, R. Zhang, D. J. Rakestraw, and R. N. Zare, Chem. Phys. Lett. 156, 7 (1989).

16
R. A. Fei, X. S. Zheng, and G. E. Hall, J. Phys. Chem. A 101, 2541 (1997).

17
S. Sieger, V. Sick, H.-R. Volpp, and J. Wolfrum, Isr. J. Chem. 34, 5 (1994).

18
H. Rubahn, W. J. van der Zande, R. Zhang, M. J. Bronikowski, and R. N. Zare, Chem. Phys. Lett. 186, 154 (1991).

19
J. A. Miller and B. C. Garrett, Int. J. Chem. Kin. 29, 275 (1997).

20
A. J. C. Varandas, Mol. Phys. 85, 1159 (1995).

21
A. J. C. Varandas, Chem. Phys. Lett. 235, 111 (1995).

22
V. Klimo, M. Bittererová, S. Biskupic, and J. Urban, Chem. Phys. 173, 367 (1993).

23
A. J. C. Varandas, Chem. Phys. Lett. 225, 18 (1994).

24
A. J. C. Varandas, J. Brandão, and M. R. Pastrana, J. Chem. Phys. 96, 5137 (1992).

25
A. J. C. Varandas, J. Chem. Phys. 99, 1076 (1993).

26
K. Kleinermanns and R. Schinke, J. Chem. Phys. 80, 1440 (1984).

27
K. Kleinermanns and E. Linnebach, J. Chem. Phys. 82, 5012 (1985).

28
R. J. Duchovic and J. D. Pettigrew, J. Phys. Chem. 98, 10794 (1994).

29
A. Lifschitz and H. Teitelbaum, Chem. Phys. 219, 243 (1997).

30
J. Q. Dai and J. Z. H. Zhang, J. Phys. Chem. 100, 6898 (1996).

31
D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 101, 3671 (1994).

32
R. T Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys. 102, 5998 (1995).

33
R. T Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys. 99, 9310 (1993).

34
G. C. Groenenboom, J. Chem. Phys. 108, 5677 (1998).

35
Y. C. Zhang, Y. B. Zhang, L. X. Zhan, S. L. Zhang, D. H. Zhang, and J. Z. H. Zhang, Chinese Phys. Lett. 15, 16 (1998).

36
B. Kendrick, Int. J. Quantum Chem. 64, 581 (1997).

37
B. Kendrick, Int. J. Quantum Chem. 66, 111 (1998).

38
B. Kendrick and R. T Pack, J. Chem. Phys. 104, 7475 (1996).

39
B. Kendrick and R. T Pack, J. Chem. Phys. 104, 7502 (1996).

40
B. Kendrick and R. T Pack, Chem. Phys. Lett. 235, 291 (1995).

41
C. Leforestier and W. H. Miller, J. Chem. Phys. 100, 733 (1994).

42
T. C. Germann and W. H. Miller, J. Phys. Chem. A 101, 6358 (1997).

43
D. E. Skinner, T. C. German, and W. H. Miller, J. Phys. Chem. A 102, 3828 (1998).

44
A. Viel, C. Leforestier, and W. H. Miller, J. Chem. Phys. 108, 3489 (1998).

45
J. A. Miller, R. J. Kee, and C. K. Westbrook, Annu. Rev. Phys. Chem. 41, 345 (1990), and references therein.

46
C. Y. Yang and S. J. Klippenstein, J. Chem. Phys. 103, 7287 (1995), and references therein.

47
C. F. Melius and R. J. Blint, Chem. Phys. Lett. 64, 183 (1979).

48
M. R. Pastrana, L. A. M. Quintales, J. Brandão, and A. J. C. Varandas, J. Phys. Chem. 94, 8073 (1990).

49
B. Kendrick and R. T Pack, J. Chem. Phys. 102, 1994 (1995).

50
H.-R. Volpp and J. Wolfrum, , private communication.

51
A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys. , to be submitted.

52
D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).

53
G. C. Groenenboom and D. T. Colbert, J. Chem. Phys. 99, 9681 (1993).

54
E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University, Cambridge UK, 1935).

55
R. T Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).

56
M. E. Rose, Elementary Theory of Angular Momentum (J. Wiley and Sons, New York NY, 1957).

57
J. M. Brown, J. T. Hougen, K.-P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Rostas, and R. N. Zare, J. Mol. Spectrosc. 55, 500 (1975).

58
A. van der Avoird, P. E. S. Wormer, and R. Moszynski, Chem. Rev. 94, 1931 (1994).

59
G. Herzberg, Molecular Spectra and Molecular Structure (Krieger, Malabar, 1991), Vol. III.

60
S. K. Gray and D. E. Manolopoulos, J. Chem. Phys. 104, 7099 (1996).

61
S. K. Gray and G. G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998).

62
Y. Huang, D. J. Kouri, and D. K. Hoffman, J. Chem. Phys. 101, 10493 (1994).

63
Y. Huang, S. S. Iyengar, D. J. Kouri, and D. K. Hoffman, J. Chem. Phys. 105, 927 (1996).

64
V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 102, 7390 (1995).

65
V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 103, 2903 (1995).

66
G.-J. Kroes and D. Neuhauser, J. Chem. Phys. 105, 8690 (1996).

67
R. Chen and H. Guo, Chem. Phys. Lett. 261, 605 (1996).

68
R. Chen and H. Guo, J. Chem. Phys. 105, 3569 (1996).

69
A. J. H. M. Meijer, E. M. Goldfield, S. Gray, and G. G. Balint-Kurti, Chem. Phys. Lett. 293, 270 (1998).

70
S. K. Gray, E. M. Goldfield, G. C. Schatz, and G. G. Balint-Kurti, Phys. Chem. Chem. Phys. 1, 1141 (1999).

71
S. E. Choi and J. C. Light, J. Chem. Phys. 90, 2593 (1989).

72
F. Webster and J. C. Light, J. Chem. Phys. 90, 265 (1989).

73
R. M. Whitnell and J. C. Light, J. Chem. Phys. 89, 3674 (1989).

74
C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, ACM Trans. Math. Softw. 5, 308 (1979).

75
J. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson, ACM Trans. Math. Softw. 14, 1 (1988).

76
J. J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling, ACM Trans. Math. Softw. 16, 1 (1990).

77
A. J. H. M. Meijer, , work in progress.

78
E. M. Goldfield and S. K. Gray, Comput. Phys. Commun. 98, 1 (1996).

79
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface (MIT Press, Cambridge MA, 1994).

80
M. Snir, S. W. Otto, S. Huss-Ledermann, D. W. Walker, and J. Dongarra, MPI: The Complete Reference (MIT Press, Cambridge MA, 1994).

81
See also: WWW: http://www.mcs.anl.gov/mpi and http://www.mcs.anl.gov/mpi/mpich.

82
A. Messiah, Quantum Mechanics (North Holland, Amsterdam NL, 1961).

83
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: the art of scientific computing, 2nd ed. (Cambridge University Press, New York NY, 1992).

84
L. B. Harding, J. Troe, and V. G. Ushakov, Phys. Chem. Chem. Phys. 2, 631 (2000).

85
B. Kendrick, J. Chem. Phys. 112, 5679 (2000).

86
M. P. D. Miranda, D. C. Clary, J. F. Castillo, and D. E. Manolopoulos, J. Chem. Phys. 108, 3143 (1998).

87
V. Ebert, C. Schulz, H.-R. Volpp, J. Wolfrum, and P. Monkhouse, Isr. J Chem. 39, 1 (1999).

Figure 1: Total reaction probability as a function of $J$. $J=0$, $J=1$, $J=2$, and $J=5$ results taken from Ref. th:anth1998;$J = 10$ results from Ref. th:anth1999
\begin{figure}\begin{center}
\epsfig{file=Fig1CC.eps,width= 6.5in}\end{center}\end{figure}

Figure 2: Total reaction probability for higher $J$ states.
\begin{figure}\begin{center}
\epsfig{file=Fig2CC.eps,width=6.5in}\end{center}\end{figure}

Figure 3: Statistically weighted ($2J+1$)total reaction probability as a function of $J$.
\begin{figure}\begin{center}
\epsfig{file=Fig3CC.eps,width=6.5in}\end{center}\end{figure}

Figure 4: Total reaction cross sections. Both sg(solid) and mw(dashed) smoothed quantum cross sections obtained with quadratic interpolation/linear extrapolation are shown. The IEQMT and VEQMT quasiclassical results are from Ref. res:vara1993
\begin{figure}\begin{center}
\epsfig{file=Fig4CC.eps,width=6.5in}\end{center}\end{figure}

Figure 5: Total reaction cross sections. Experimental O-detection results are the most recent results from Volpp and Wolfrum.[50] The theoretical quantum cross sections are the smoothed quantum cross sections obtained with quadratic interpolation/linear extrapolation. We also show the older experimental results otained with OH detection[17,87]
\begin{figure}\begin{center}
\epsfig{file=Fig5CC.eps,width=6.5in}\end{center}\end{figure}



Anthony J. H. M. Meijer 2000-10-05